

s4.sonoma.edu

Kevin John NASA Education/Public Outreach Sonoma State University

Dr. Lynn Cominsky **Program Director**

Dr. Kevin McLin GTN Director

Dr. Carolyn Peruta **Education Support Scientist**

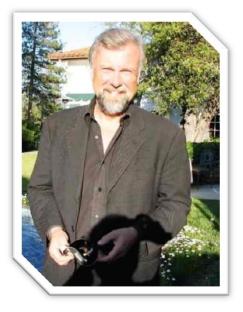
Lauryn Loudermilk Student Assistant – CS

Juanita Tenorio Student Assistant – Business

Aurore Simonnet Scientific Illustrator

Laura Chase

David McCall Project Support Coordinator Systems Administrator


Kevin Zack Student Assistant – Physics

Amandeep Gill Student Assistant – Physics

We support several different NASA Space Science missions, and are currently developing an online college curriculum in Cosmology. Our mission is to develop exciting formal and informal educational materials that use high-energy space science as a means to inspire students in grades 5-14 to pursue STEM careers, to train teachers nation-wide in the classroom use of these materials, and to enhance science literacy for the general public.

Collaborators

Ken Biba AeroPac Education Director

Tony Alcocer AeroPac President

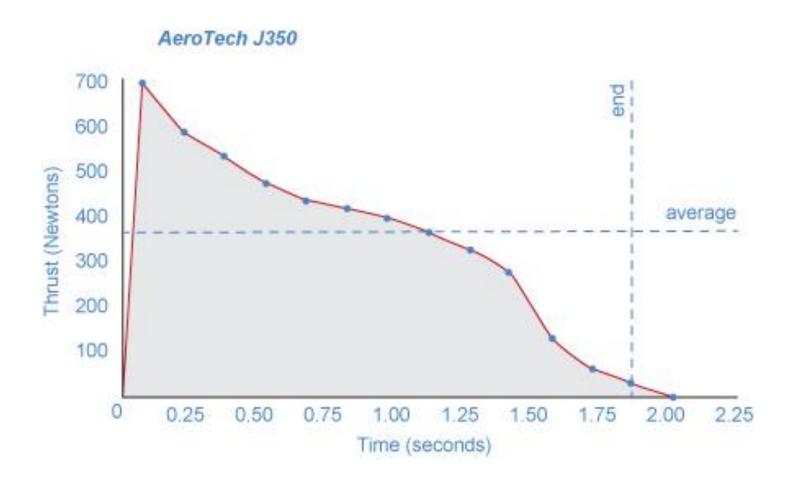
Steve Kliewer Endeavor Director

Rockets & Balloons

Payload Electronics

Ground Systems

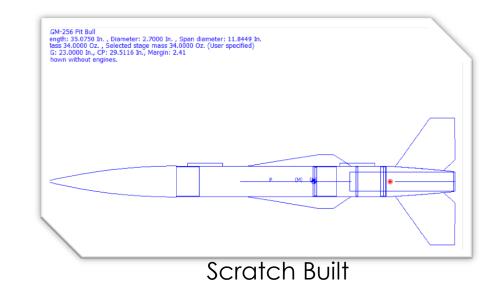
Education


High Powered Rocketry

Motor Classifications

	А	1.26-2.5 N⋅s		
	В	2.51-5.0 N⋅s		
	С	5.01-10.0 N·s		
	D	10.01-20.0 N·s		
Low Power	E	20.01-40.0 N·s		
	F	40.01-80.0 N⋅s		Total Impulse
	G	80.01-160.0 N·s		J-350 Specific Impulse
High Power	Н	160.01-320 N·s	1,1	
	I	320.01-640 N·s		
	J	640.01-1,280 N·s	1	specific impose
	К	1,280.01-2,560 N⋅s	L2	
	L	2,560.01-5,120 N⋅s		
	М	5,120.01-10,240 N·s	1	
	Ν	10,240.01-20,480 N·s	L3	
	0	20,480.01-40,960 N⋅s		
Space Shuttle SRB	5Z	671,088,640.01-1,342,177,280 N·s		

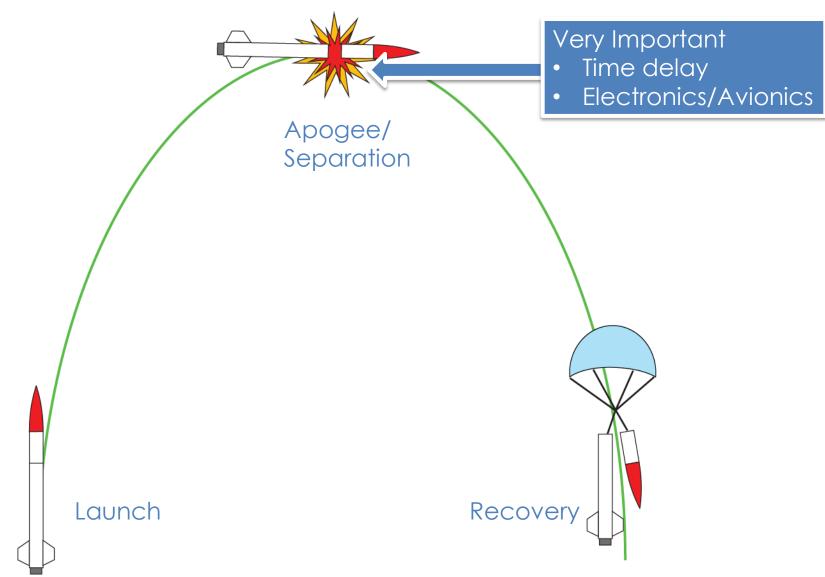
Thrust Curve



Show Motor Casings

Airframe Design

Manufactured Kit



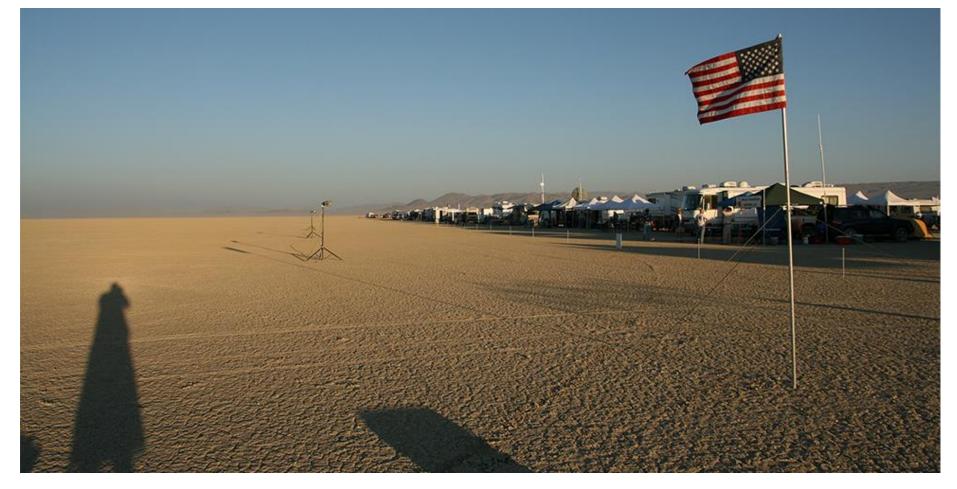
Materials

- Fiberglass
- Cardboard
- Carbon Fiber
- Aluminum

Show Airframes

Ballistic Profile

Launch Sites


Snow Ranch (10,000 ft)

Launch Sites

Lucerne Lake Bed (15,000 ft)

Launch Sites

Black Rock Desert (200,000 ft)

High Powered Rocketry and YOU

Certification Process:

Level 1 – Build, fly and recover an airframe on an L1 motor

Level 2 – Build, fly and recover an airframe on an L2 motor and pass a written test

Level 3 - Build, fly and recover an airframe on an L3 motor using electronics **Upcoming Launches:**

Saturday, October 26th 9:00am Low Power Launch, Moffett

Saturday, November 2nd 9:00am High Power Launch, Snow Ranch

November 9th-10th RocStock, Lucerne Lake Bed

July 2014 Mudrock – Black Rock Desert

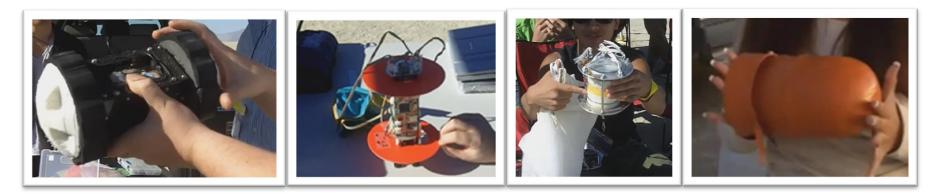
LUNAR <u>http://lunar.org/</u> AeroPac <u>http://aeropac.org/</u> ROC <u>http://rocstock.org/</u>

High Altitude Balloons

- Doesn't require certification or complicated FAA clearance
- Less expensive
- Doesn't require advanced equipment for telemetry
- Less constraints on payload size and weight
- Can be flown tethered to 1,000 feet or untethered
- Greater control over altitude
- Much longer time series for data

Balloonfest

Tobin James Cellars, Paso Robles, Ca


Payload Electronics

Ground Systems

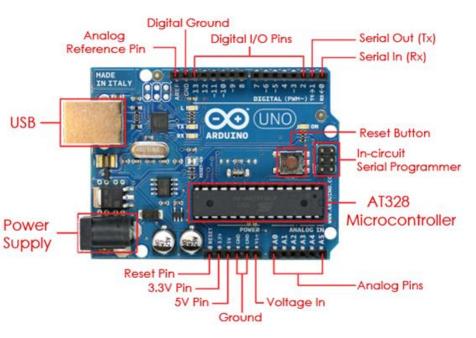
Education

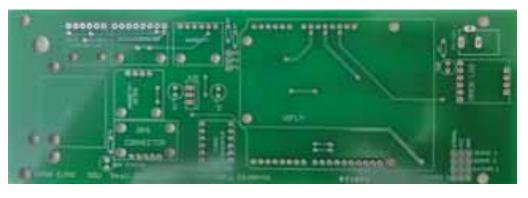
ARLISS

A Rocket Launch for International Student Satellites



- Derivative of the CanSat concept developed by Prof. Bob Twiggs
- Collaboration between engineering students and amateur rocket flyers
- Various payload designs flown over the years include come-back rovers and scientific instruments
- Black Rock Desert simulates harsh alien
 environments


S4 Payload


Arduino

- Open-source physical computing platform based on a simple microcontroller board, and a development environment for writing software for the board.
- Inexpensive (~\$30 board)
- Platform agnostic
- Easy to program (C/C++)
- Open source software Software where the source code is made freely available
- Open source hardware Hardware where the design specifications are made freely available
- Low Power

Flight Board

- Printed Circuit Board (PCB)
- NOT off the shelf (yet) provided by us
- Physical backbone of the payload
- Facilitates power and communication between payload components
- Requires soldering skill to assemble
- Does not require soldering skill to attach components once assembled
- Manufacturing partner for assembly?

Major Subcomponents

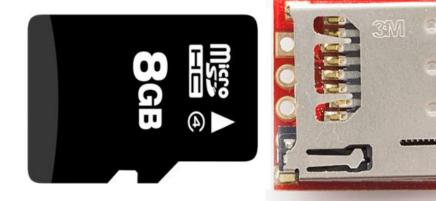
Logic Level Converter – Steps 5V source from Arduino down to 3.3V source for payload components

Voltage Regulator – protects payload components from over-voltage. Dissipates extra energy as heat.

GPS

- Determine Latitude, Longitude, Altitude and Time for payload data points
- Same type of GPS as cell phones and Navigation
- Requires satellite signal to lock
- Lock can take up to two minutes

GPGGA, 210044.00, 3820.39934, N, 12240.61207, W, 1, 06, 1.78, 55.0, M, -29.2, M, *5B GPGGA, 210045.00, 3820.39922, N, 12240.61234, W, 1, 06, 1.78, 55.9, M, -29.2, M, *54 GPGGA, 210046.00, 3820.39839, N, 12240.61260, W, 1, 06, 1.78, 56.4, M, -29.2, M, *53 GPGGA, 210047.00, 3820.39784, N, 12240.61293, W, 1, 06, 1.78, 56.4, M, -29.2, M, *57 GPGGA, 210048.00, 3820.39738, N, 12240.61346, W, 1, 06, 1.78, 56.4, M, -29.2, M, *56 GPGGA, 210049.00, 3820.39682, N, 12240.61368, W, 1, 06, 1.78, 56.9, M, -29.2, M, *56 GPGGA, 210050.00, 3820.39682, N, 12240.61368, W, 1, 06, 1.78, 56.9, M, -29.2, M, *56 GPGGA, 210051.00, 3820.39660, N, 12240.61340, W, 1, 06, 1.78, 57.1, M, -29.2, M, *51 GPGGA, 210051.00, 3820.39646, N, 12240.61307, W, 1, 05, 5.23, 56.9, M, -29.2, M, *57

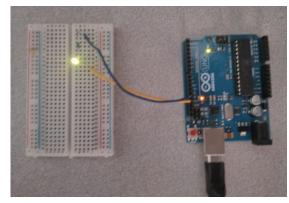

- Same type of Wi-Fi as computers and cell phones (802.11 b/g)
- Example of an Arduino Shield (shares pins with Arduino)
- Prototyping holes (unused)
- Maintain real-time telemetry throughout the flight
- Must be configured with network information
- Duck antenna improves signal
- Orientation not particularly important
- Not needed for classroom testing

Open Log (SD)

- Collect and store data without need for wireless networking
- Maintain data collection if and when wireless signal lost
- Same type of micro SD as cell phones
- Writes to a plain text file
- SD card reader and micro to standard adapter needed to recover data

<sensor>PayloadName,data,1

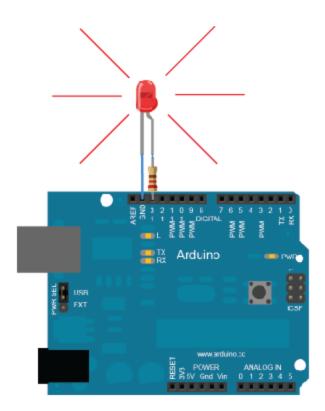
Magnetometer


Accelerometer

Barometric Pressure And Temperature

Programming Arduino

Step 1: Configure Hardware


File Edit Sketch Tools Help		
♥ ● ■ ■ ■		ø
Blink§		
//includes		
<pre>#include <softwareserial.h></softwareserial.h></pre>		
//definitions		
int led = 13;		
// the setup routine runs or	ice when you press reset:	
<pre>void setup() { // initialize the digital</pre>		
<pre>// initialize the digital pinMode(led, OUTPUT);</pre>	pin as an output.	
}		
// the loop routine runs ove	er and over again forever:	
void loop() {	// turn the LED on (HIGH is the voltage level)	
	<pre>// curn the LED on (High is the voltage level) // wait for a second</pre>	
	// turn the LED off by making the voltage LOW	
	// wait for a second	
}		
•		F.
1	Arduino Uno	

Step 3: Load Sketch to Device

Step 2: Write Code (Sketch)

Programming Arduino

Step 4: Rejoice!

Anatomy of an Arduino Program

File Edit Sketch Tools Help						
	<u>.</u>					
S4_SerialMonitor						
void setup()	~					
{						
Serial.begin(9600);						
) void loop ()						
(
Serial.println("Hello World");						
delay(1000);						
}						
	-					
4	•					
1 Arduino Uno on CC	0M9					

- Sketches always have at least
 two functions, setup and loop
- Setup gets run once and only once right after the device is started or restarted
- Loop is run continuously thereafter for as long as the device is active.

Open Source Hardware and YOU

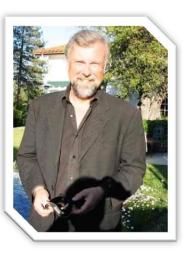
http://arduino.cc/en/

http://www.sparkfun.com

http://www.adafruit.com/

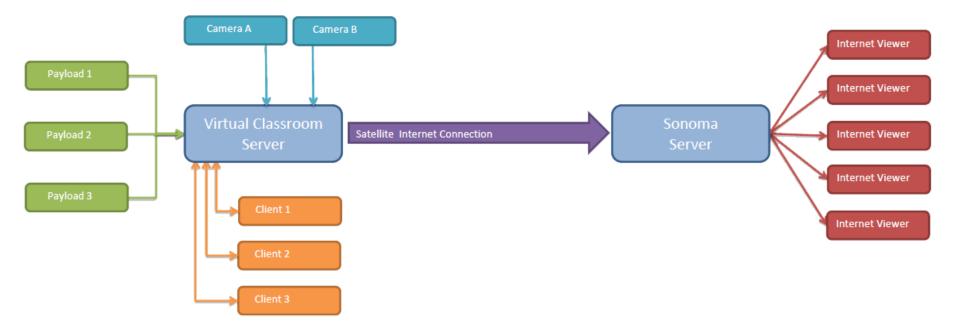
http://www.makershed.com/Default.asp

Payload Electronics


Ground Systems

Education

The Virtual Classroom



- Wi-Fi antennas and routers for supporting live telemetry from payloads
- Facilitate communication between
 payloads and local observers
- Satellite Internet for sending live telemetry and video to remote observers
- Administered by AeroPac and partially funded by our project
- Designed and built by AeroPac
 Education Director
 Ken Biba

Show Handheld Antenna

Systems Overview (With VC)

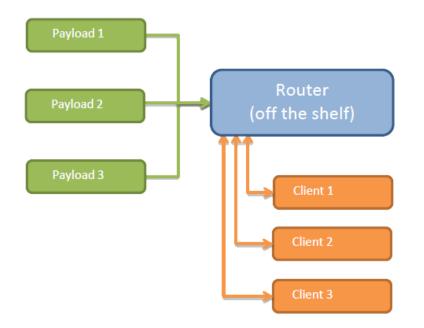
Server Side Software

```
import java.awt.Image;
[ @SuppressWarnings("serial")
! public class ServerFrame extends JFrame {
10
     public ServerFrame()
     {
         java.net.URL url = ClassLoader.getSystemResource("Graphics/S4.png");
7
         Toolkit kit = Toolkit.getDefaultToolkit();
         Image img = kit.createImage(url);
         this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
         this.setIconImage(img);
3
         this.setTitle("Server");
         JLabel lblCurrentPayloadConnections = new JLabel("Active Payload Connections");
         lblCurrentPayloadConnections.setFont(new Font("Tahoma", Font.PLAIN, 30));
         getContentPane().add(lblCurrentPayloadConnections, BorderLayout.NORTH);
         Connection connection1 = new Connection();
         connection1.ipAddress = "192.168.1.100";
         connection1.payloadName = "SSU-01";
         ConnectionsList connections = ConnectionsList.getInstance();
         getContentPane().add(connections);
```

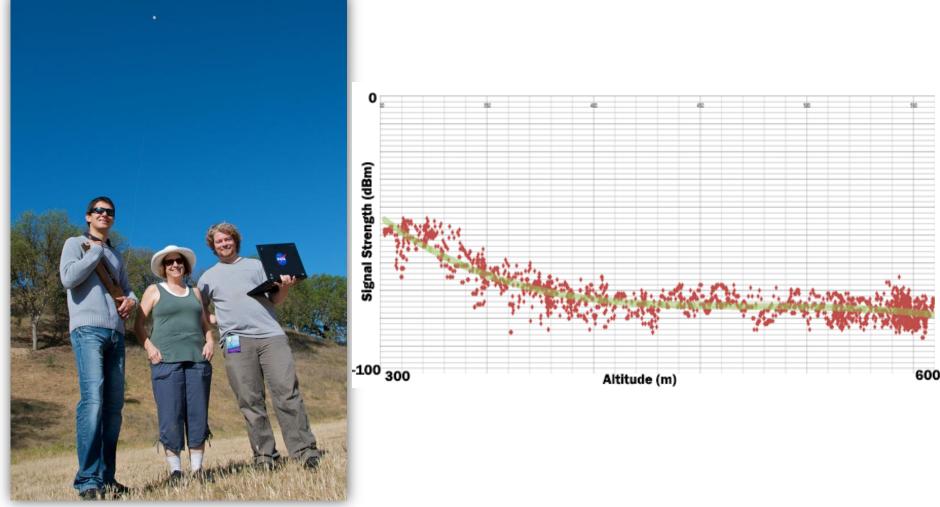
Java based server software:

- Listens for data packets from payload from low level socket
- Processes and saves raw data to database
- Facilitates communication with local clients viewing live data
- Synchronizes data with remote server (wip)

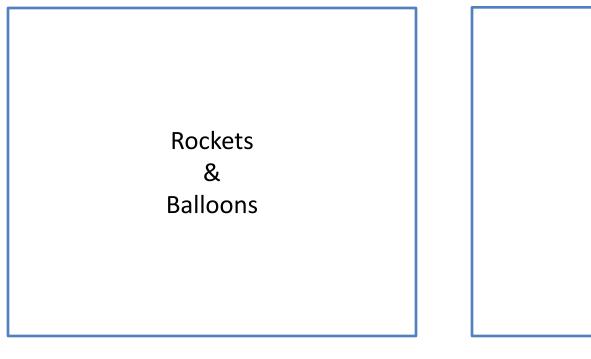
Server Side Data Storage


+ Options											
←T→	~	id	Payload	Time Stamp	GPS_Lon	GPS_Lat	GPS_Alt	GPS_TimeStamp	GPS_Fix	GPS_Raw	Signal
📄 🥜 Edit 👫 Copy 🌘	Delete	1	SSU-02	2013-07-01 12:24:45	0	0	0			SSU-02,\$È(è	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	2	SSU-02	2013-07-01 12:24:46	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	3	SSU-02	2013-07-01 12:24:47	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	4	SSU-02	2013-07-01 12:24:48	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	5	SSU-02	2013-07-01 12:24:49	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	6	SSU-02	2013-07-01 12:24:50	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	7	SSU-02	2013-07-01 12:24:51	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	8	SSU-02	2013-07-01 12:24:52	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	9	SSU-02	2013-07-01 12:24:53	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	10	SSU-02	2013-07-01 12:24:54	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	11	SSU-02	2013-07-01 12:24:55	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	12	SSU-02	2013-07-01 12:24:56	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	13	SSU-02	2013-07-01 12:24:57	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	14	SSU-02	2013-07-01 12:24:58	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	15	SSU-02	2013-07-01 12:24:59	0	0	0		0	SSU-02,\$GPGGA,,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	16	SSU-02	2013-07-01 12:25:00	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌘	Delete	17	SSU-02	2013-07-01 12:25:01	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
🔲 🥜 Edit 👫 Copy 🌾	Delete	18	SSU-02	2013-07-01 12:25:02	0	0	0		0	SSU-02,\$GPGGA,,,,,0,00,99.99,,,,,,*48	0
					-	-	-		_		-

+ Options

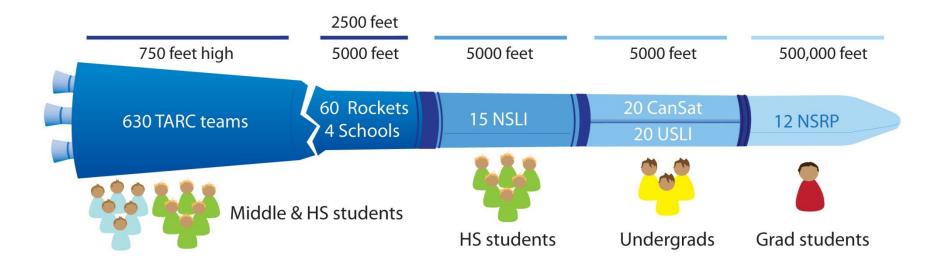

 T→		∇	ID	PayloadDataID	Sonsorkov	SonsorValuo
1			_		Jensonney	
6 Edit	Copy	Delete	1	172		Baro
🥜 Edit	📑 Copy	Oelete	2	172	100196	Temp
🥜 Edit	Copy	Delete	3	172	26.70	Hum
🥜 Edit	Copy	🔵 Delete	4	172	50.22	Temp2
🥜 Edit	🛃 Copy	Delete	5	172	26.46	AceIX
🥜 Edit	🛃 Copy	Oelete	6	172	0.0784	AcelY
🥜 Edit	Copy	Delete	7	172	-0.3843	AcelZ
🥜 Edit	🛃 Copy	Oelete	8	172	0.8549	MagX
🥜 Edit	🛃 Copy	Delete	9	172	346	MagY
🥜 Edit	🛃 Copy	Oelete	10	172	-169	MagZ
🥜 Edit	Copy	Delete	11	173	Baro	100194
🥜 Edit	🛃 Copy	Delete	12	173	Temp	26.70
🥜 Edit	🛃 Copy	Delete	13	173	Hum	50.14
🥜 Edit	🛃 Copy	Oelete	14	173	Temp2	26.47
🥜 Edit	Copy	Delete	15	173	AcelX	0.0745
🥜 Edit	🛃 Copy	🔵 Delete	16	173	AcelY	-0.3882
🥜 Edit	Sei Copy	Oelete	17	173	AcelZ	0.8667
🥜 Edit	🛃 Copy	🥥 Delete	18	173	MagX	345
<u>⊿</u> ⊏	Et Comu	A Dalata	10	170	MaaV	170

- Parity with on-board data storage
- Aggregation of data from multiple flights and payloads
- Real-time sharing with remote observers


Systems Overview (Without VC)

Signal Strength vs. Altitude (off the shelf router)

Balloonfest 2013



Payload Electronics

Ground Systems

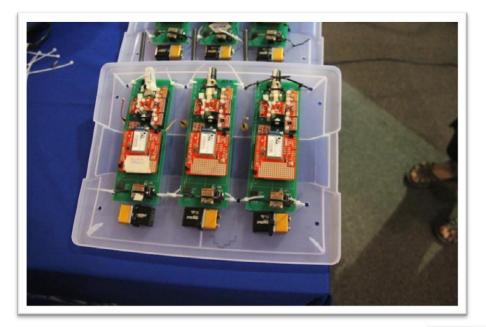
Education

Original Impetus for S4 Project

Addressing disconnect in pipeline for rocket based education

S4 Teacher Training – July 2013 Aero Institute, Palmdale Ca

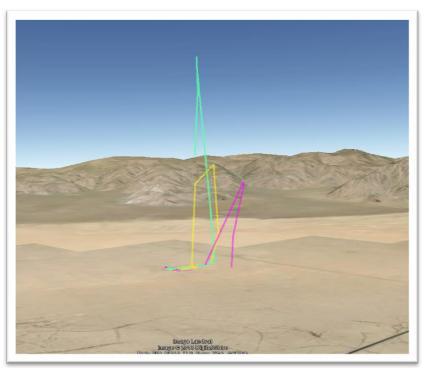
- 18 educators from a diverse set of schools and other teaching organizations
- Week long course
- Built, tested and flew a prototype payload
- Helped us refine our educational materials and the payload itself
- Included talks from our partners and mentors



The first two days were spent learning the basics of electronics and soldering which were then put to use in constructing the flight board.

Beth Hill, Lawrence Jones Middle School

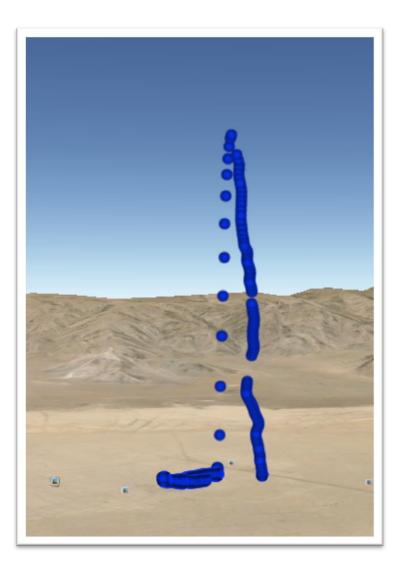
Once the flight board was finished the educators were introduced to programming in Arduino's Processing language. They were then able to upload the programs to the payload after which they installed the sensors onto the flight board and finalized the payload.

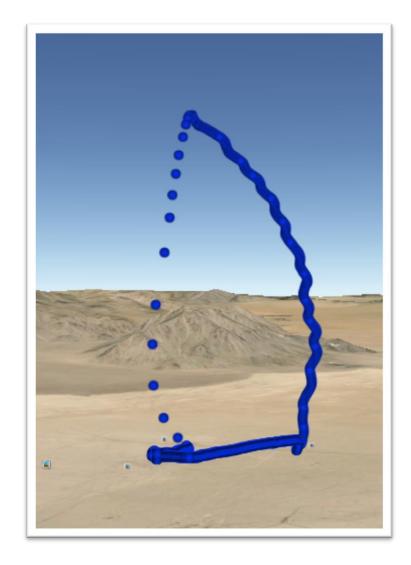

On Thursday the educators took their payloads out to a local high school's fields. They readied their payloads for tethered helium balloon flights, threeto-a-gondola, as dark storm clouds were approaching.

Once a helium balloon was filled and tethered the winds really kicked up and it began to rain. With the weather too chaotic to fly helium balloons, the educators took their payloads around the high school on foot in order to get data.

Donald Repucci, Morrow Bay

On Saturday the training was shifted to the Lucerne dry lake bed about 70 miles east of Palmdale. There, the payloads were flown on 3 and 4 inch diameter rockets to altitudes as high as 1828.1m (6000 feet) with on-site routers taking live data of each launch.


Raw Data


<gps>Jadkins, \$GPGGA, 164839.00, 3429.81825, N, 11657.47729, W, 1, 07, 1.87, 864.4, M, -30.8, M, ,*6F</gps> <sensor>Jadkins,,Baro,91705,Temp,35.00,Hum,16.70,Temp2,34.52,AcelX,0.8549,AcelY,0.6118,AcelZ,0.1098,MagX,-189,MagY,-633,MagZ,-77</sensor> <gps>Jadkins, \$GPGGA, 164840.00, 3429.81803, N, 11657.47803, W, 1, 07, 1.87, 865.9, M, -30.8, M, ,*6E</gps> <sensor>Jadkins,Baro,91702,Temp,34.90,Hum,25.08,Temp2,33.99,AcelX,0.7804,AcelY,0.4667,AcelZ,0.4039,MagX,-236,MagY,-595,MagZ,-128</sensor> <gps>Jadkins, \$GPGGA, 164841.00, 3429.81739, N, 11657.47909, W, 1, 07, 1.87, 868.8, M, -30.8, M, ,*6E</gps> <sensor>Jadkins,Baro,91714,Temp,35.00,Hum,24.42,Temp2,33.99,AcelX,0.4941,AcelY,0.1804,AcelZ,0.7882,MagX,-202,MagY,-485,MagZ,-323/sensor> <gps>Jadkins,\$GPGGA,164842.00,3429.81715,N,11657.47944,W,1,07,1.87,869.9,M,-30.8,M,,*6A</gps> <sensor>Jadkins,Baro,91707,Temp,35.00,Hum,23.06,Temp2,33.99,AcelX,0.6431,AcelY,0.2392,AcelZ,0.6745,MagX,-243,MagY,-513,MagZ,-265</sensor> <gps>Jadkins,\$GPGGA,164843.00,3429.81713,N,11657.47962,W,1,07,1.87,870.0,M,-30.8,M,,*68 <sensor>Jadkins,Baro,91715,Temp,35.00,Hum,22.06,Temp2,34.00,AcelX,0.7490,AcelY,0.3255,AcelZ,0.5725,MagX,-245,MagY,-538,MagZ,-229</sensor> <qps>Jadkins,\$GPGGA,164844.00,3429.81711,N,11657.47990,W,1,07,1.87,870.4,M,-30.8,M,,*64 <sensor>Jadkins,Baro,91713,Temp,35.00,Hum,22.13,Temp2,34.02,AcelX,0.7216,AcelY,0.2314,AcelZ,0.6235,MagX,-278,MagY,-522,MagZ,-215</sensor> <qps>Jadkins,\$GPGGA,164845.00,3429.81708,N,11657.48002,W,1,07,1.87,870.6,M,-30.8,M,,*62</qps> <sensor>Jadkins.Baro,91708.Temp, 35.00.Hum, 21.52.Temp2, 34.03, AcelX, 0.8157, AcelY, 0.2588, AcelZ, 0.5216, MagX, -306, MagY, -527, MagZ, -180/sensor> <gps>Jadkins, \$GPGGA, 164846.00, 3429.81702, N, 11657.48011, W, 1, 07, 1.87, 870.8, M, -30.8, M, , *67</gps> <sensor>Jadkins,Baro,91708,Temp,35.00,Hum,21.55,Temp2,34.04,AcelX,0.7569,AcelY,0.2392,AcelZ,0.5608,MagX,-273,MagY,-522,MagZ,-227</sensor> <qps>Jadkins,\$GPGGA,164847.00,3429.81694,N,11657.48024,W,1,07,1.87,870.9,M,-30.8,M,,*6F <sensor>Jadkins,Baro,91706,Temp,35.00,Hum,21.28,Temp2,34.04,AcelX,0.7569,AcelY,0.2510,AcelZ,0.5765,MagX,-276,MagY,-519,MagZ,-223</sensor> <gps>Jadkins,\$GPGGA,164848.00,3429.81694,N,11657.48054,W,1,07,1.87,871.2,M,-30.8,M,,*6D <sensor>Jadkins,Baro,91708,Temp,35.00,Hum,21.67,Temp2,34.07,AcelX,0.7529,AcelY,0.2196,AcelZ,0.5725,MagX,-279,MagY,-521,MagZ,-222</sensor> <gps>Jadkins,\$GPGGA,164849.00,3429.81691,N,11657.48090,W,1,07,1.87,871.6,M,-30.8,M,,*65 <sensor>Jadkins,Baro,91712,Temp,35.00,Hum,22.19,Temp2,34.10,AcelX,0.7529,AcelY,0.2078,AcelZ,0.5529,MagX,-275,MagY,-520,MagZ,-228/sensor> <gps>Jadkins,\$GPGGA,164850.00,3429.81682,N,11657.48118,W,1,07,1.87,872.0,M,-30.8,M,,*6B <sensor>Jadkins,Baro,91705,Temp,35.00,Hum,21.52,Temp2,34.10,AcelX,0.7569,AcelY,0.2353,AcelZ,0.5608,MagX,-274,MagY,-521,MagZ,-228/ sensor> <gps>Jadkins, \$GPGGA, 164851.00, 3429.81685, N, 11657.48148, W, 1, 07, 1.87, 872.7, M, -30.8, M, ,*6F</gps> <sensor>Jadkins,Baro,91696,Temp,35.00,Hum,20.73,Temp2,34.07,AcelX,0.7490,AcelY,0.2353,AcelZ,0.5725,MagX,-272,MagY,-520,MagZ,-228/sensor> <gps>Jadkins, \$GPGGA, 164852.00, 3429.81682, N, 11657.48171, W, 1, 07, 1.87, 873.1, M, -30.8, M, , *66</gps> <sensor>Jadkins,Baro,91709,Temp,35.00,Hum,20.21,Temp2,34.07,AcelX,0.7529,AcelY,0.2471,AcelZ,0.5490,MagX,-271,MagY,-525,MagZ,-224</sensor> <gps>Jadkins,\$GPGGA,164853.00,3429.81671,N,11657.48195,W,1,07,1.87,873.6,M,-30.8,M,,*66</gps> <sensor>Jadkins,Baro,91709,Temp,35.00,Hum,19.73,Temp2,34.07,AcelX,0.8078,AcelY,0.2000,AcelZ,0.3725,MagX,-264,MagY,-549,MagZ,-191/sensor>

Time	Lon	Lat	Alt	Baro	Temp	Hum	Temp2	AcelX	AcelY	AcelZ	MagX	MagY	MagZ
60519	-116.958	34.49697	864.4	91705	35	16.7	34.52	0.8549	0.6118	0.1098	-189	-633	-77
60520	-116.958	34.49697	865.9	91702	34.9	25.08	33.99	0.7804	0.4667	0.4039	-236	-595	-128
60521	-116.958	34.49696	868.8	91714	35	24.42	33.99	0.4941	0.1804	0.7882	-202	-485	-323
60522	-116.958	34.49695	869.9	91707	35	23.06	33.99	0.6431	0.2392	0.6745	-243	-513	-265
60523	-116.958	34.49695	870	91715	35	22.06	34	0.749	0.3255	0.5725	-245	-538	-229
60524	-116.958	34.49695	870.4	91713	35	22.13	34.02	0.7216	0.2314	0.6235	-278	-522	-215
60525	-116.958	34.49695	870.6	91708	35	21.52	34.03	0.8157	0.2588	0.5216	-306	-527	-180
60526	-116.958	34.49695	870.8	91708	35	21.55	34.04	0.7569	0.2392	0.5608	-273	-522	-227
60527	-116.958	34.49695	870.9	91706	35	21.28	34.04	0.7569	0.251	0.5765	-276	-519	-223
60528	-116.958	34.49695	871.2	91708	35	21.67	34.07	0.7529	0.2196	0.5725	-279	-521	-222
60529	-116.958	34.49695	871.6	91712	35	22.19	34.1	0.7529	0.2078	0.5529	-275	-520	-228
60530	-116.958	34.49695	872	91705	35	21.52	34.1	0.7569	0.2353	0.5608	-274	-521	-228
60531	-116.958	34.49695	872.7	91696	35	20.73	34.07	0.749	0.2353	0.5725	-272	-520	-228
60532	-116.958	34.49695	873.1	91709	35	20.21	34.07	0.7529	0.2471	0.549	-271	-525	-224
60533	-116.958	34.49695	873.6	91709	35	19.73	34.07	0.8078	0.2	0.3725	-264	-549	-191
60534	-116.958	34.49694	874.1	91698	35	19.35	34.07	0.8078	0.2	0.3725	-321	-337	-338

<gps>Jadkins,\$GPGGA,164854.00,3429.81655,N,11657.48204,W,1,07,1.87,874.1,M,-30.8,M,,*6C</gps>

Flight Paths

Everything thing went *perfectly...*

...right up until the last flight

Nose cone from "lawn dart" rocket

What's Next?

- Over the next year, students of the teachers from our training will be building and flying payloads of their own (around 55 teams total)
- Working with suppliers and manufacturers to try and make the parts needed to build the S4 payload more readily and easily available
- Address some supply chain concerns
- Publish revisions to our educational materials
- Publish remainder of our source code through GitHub

For more information visit:

s4.sonoma.edu

Kevin John NASA Education/Public Outreach Sonoma State University