SMALL SATELLITES FOR SECONDARY STUDENTS

000000

000000 00000000

P71854

Prof. Lynn Cominsky

- Summarizes the relationship between Potential Difference (V), resistance (R) and current (I)
- Potential difference is measured in volts (V)
- Resistance is measured in ohms (Ω)
- Current is measured in amperes (A)

$$V = IR$$

Resistor Color Code

Color	Band 1	Band 2	Band 3
Black	0	0	1.00
Brown	1	1	10.00
Red	2	2	100.00
Orange	3	3	1,000.00
Yellow	4	4	10,000.00
Green	5	5	100,000.00
Blue	6	6	1,000,000.00
Violet	7	7	10,000,000.00
Grey	8	8	
White	9	9	
Gold			0.10
Silver			0.01

What is this resistance?

Brown \rightarrow 1 Green \rightarrow 5 Brown \rightarrow x 10 =150 Ω

Same current flows through all 3 resistors

Parallel resistors

$$V = I_{tot} R_{eq}$$

$$V = I_1 R_1 = I_2 R_2 = I_3 R_3$$

$$I_{tot} = I_1 + I_2 + I_3$$

$$1/R_{eq} = 1/R1 + 1/R2 + 1/R3$$

Capacitors in Parallel

definition of capacitance:
C = Q/V where Q is the charge held on a plate

Same voltage drop across all 3 capacitors

$$V = Q_{tot} / C_{tot}$$

$$V = Q_1 / C_1 = Q_2 / C_2 = Q_3 / C_3$$

$$C_{tot} = Q_1 / V + Q_2 / V + Q_3 / V$$

$$C_{tot} = C_1 + C_2 + C_3$$

$$V = Q/C_{tot}$$

 $V_1 = Q/C_1$ $V_2 = Q/C_2$ $V_3 = Q/C_3$
 $V = V_1 + V_2 + V_3 = Q/C_1 + Q/C_2 + Q/C_3$
 $1/C_{tot} = 1/C_1 + 1/C_2 + 1/C_3$

Measuring R with Pasco board

What resistance do you read?

Use patch cords to try some other combinations of the resistors on the left (10 Ω , 33 Ω and 100 Ω)

Measuring V with Pasco board

Use patch cords to attach the battery to some of the other combinations of the resistors on the left (10 Ω , 33 Ω and 100 Ω)

is in series with the battery and

resistor

Measuring I with Pasco board

Can you draw this circuit?

If you have time, try measuring current with some of the other resistors on the left.

Any questions?

